1- 9p
临界表面张力研究
资料来源;染整工程第四册p133-148陶乃杰主编
当一个小水滴置于光滑均匀的固体表面上,由于液体和固体的表面张力 (分别用YLG和YSG表示),以及液-固间的界面张力 (YLS)相互作用的结果,决定了液滴铺展的情况(从圆珠形到完全铺平)。除液体在固体表面迅速渗开而将固体完全润湿外,液滴在固体表面上处于平衡状态时如图4-1所示。
通过水滴与固体平面的接触点A作水滴的切线,该切线与固体平面间的夹角称接触角θ,其与液、固表面张力的关系如杨氏方
程式所示,
当θ=0°时,液滴在固体表面完全铺平,表示固体表面被液滴完全润湿,当θ= 180°时,液滴为圆珠形,这是一种理想
图4-1 液滴在固体面的平衡状态
的不润湿状态;当θ=90°时,表示固体已有拒水效果。在拒水整理中,可将液体 (水)的表面张力看作是常数。因此,液体能否润湿固体表面,决定于固体的表面张力 (YSG)和液-固的界面张力 (YLS)。从拒水要求来说,YSG- YLS 应为负值,即θ>90°。
液-固间相互作用是导致润湿性大小的原因,可用附着功WA来表示。所谓附着功是指分离单位液-固接触面积所需之功,它是液-固界面结合能力及两相分子间相互作用力大小的表征;
WA= YSG + YLG- YLS (2)
合并(1)和(2)式,则得:
WA= YLG(1+cosθ) (3)
式(3)表明附着功是接触角θ的函数。附着功越大,润湿性越强;粘附功越小,拒水性越强。
当YSG = YLG, YLS =0 , WA=2YLG= Wc
则Wc为液体的内聚功(表示分离单位面积液柱所需之功),那么当附着功(WA)等于内聚功(WC)时,接触角为零,这时液体在固体表面完全铺开。由于cosθ不能超过1,因此即使附着功大于2YLG (即WA>WC,接触角仍保持零不变。如果WA= YLG,则θ为90°,当接触角为180°时,WA=0,表明液体和固体之间没有附着作用。然而由于两相间多少存在一些粘着作用,所以接触角一般为160°或更大一些。而不等于180°。
从上述讨论可知,当WA≥WC时,液体才能在固体表面铺展,以固一液界面代替固-气界面。当铺展面积为单位值时,体系自由能降低为;
-△G=S=WA-WC
(4)
S为铺展系数,它与界面张力之间的关系可表示为,
S=YSD+YLG-YLS-2YLG=YSG-(YLS+YLG) (5)
在式(5)中,若S>0,液体可以在固体表面自动展开,连续地从固体表面取代气体 (即润湿或渗透);若S<0,液体在固体表面不能铺展 (即成珠状)。由于式(5)中YLS与YLG相比,其值甚小,可忽略不计,因此,若要水对固体表面不润湿,则必须使固体表面张力(YSG)小于液体的表面张力(YLG)。
表面能低的固体平面不易被水所润温,但是缺乏有效的测定固体表面能的方法,大量集中于间接测定或通过与之成比例的量,表示没有定值。几十年来,随着高聚物的广泛应用,以及对低能表面润湿性的进一步研究,齐斯曼 (ZiSman)等发现,同系物液体在同一固体平面上的接触角随液体表面张力降低而变小。以其cosθ对液体表面张力作图,可得一直线,将直线延长至cosθ=1之处,相应的表面张力值称为此固体平面的临界表面张力,以YC表示。图4-2表示正烷烃同系物在聚四氟乙烯表面上的
cosθ值与其相应的表面张力之间的关系,若将此直线外推至cosθ=1(即接触角为零)之处,得其相应的表面张力值约为 18×10-5N/cm;此值即为该固体表面的临界表面张力。